Submitted by Jorge Cisneros
on
Speaker: Susanna Haziot, Brown University
Date: October 14, 2021
Title: Large-amplitude steady solitary water waves with constant vorticity
Abstract: In this talk I will present an existence result for two-dimensional steady solitary water waves with constant vorticity propagating under the influence of gravity over an impermeable flat bed. The particularity of these waves is that they may have internal stagnation points and overhanging wave profiles. The proof relies on a novel reformulation of the problem as an elliptic system for two scalar functions in a fixed domain: one describing the conformal map of the fluid region and the other the flow beneath the wave. This is a joint work with Miles. H. Wheeler (University of Bath).