Joel Tropp: Randomly pivoted Cholesky

Submitted by Ingrid Richter on

The Department of Applied Mathematics is pleased to host this series of colloquium lectures, funded in part by a generous gift from the Boeing Company. This series will bring to campus prominent applied mathematicians from around the world.


Title: Randomly pivoted Cholesky

Abstract: André-Louis Cholesky entered École Polytechnique as a student in 1895. Around 1910, during his work as a surveyer for the French army, Cholesky invented a technique for solving positive-definite systems of linear equations. Cholesky's method can also be used to approximate a positive-semidefinite (psd) matrix using a small number of columns, called "pivots". A longstanding question is how to choose the pivot columns to achieve the best possible approximation.

This talk describes a simple but powerful randomized procedure for adaptively picking the pivot columns. This algorithm, randomly pivoted Cholesky (RPC), provably achieves near-optimal approximation guarantees. Moreover, in experiments, RPC matches or improves on the performance of alternative algorithms for low-rank psd approximation.

Cholesky died in 1918 from wounds suffered in battle. In 1924, Cholesky's colleague, Commandant Benoit, published his manuscript. One century later, a modern adaptation of Cholesky's method still yields state-of-the-art performance for problems in scientific machine learning.

Joint work with Yifan Chen, Ethan Epperly, and Rob Webber. Available at arXiv:2207.06503.

Youtube: Watch the talk online here

Share